ESPHome firmware for ESP32 with GGreg20_V3 – solution to the problem with the pulse counter
Problem solution - in the example for ESPHome firmware with ESP32 controller, the pulse counter stopped working
0 Comments
04.01.2025
Problem solution - in the example for ESPHome firmware with ESP32 controller, the pulse counter stopped working
Our site and the GGreg20_V3 DIY Geiger counter product are referenced by the author of the book Francesco Riggi, published by Springer in April 2024 under the title Educational and Amateur Geiger Counter Experiments.
Our Etsy store has been awarded the Etsy Star Seller badge for two months in a row. This was made possible thanks to our valued customers and the efforts of the IoT-devices team that designs, manufactures and ships our IoT and DIY products worldwide from Ukraine.
може сховати лістинг у акордеон? ####### ggreg20_esp8266_esphome.yaml ##### esphome: name: esphome_node1 # Controller Unique Name platform: ESP8266 # Platform type you have to select when creating new yaml-config in ESP Home board: nodemcuv2 # Controller type you have to select when creating new yaml-config in ESP Home wifi: ssid: "YourWiFiSSID" password: "SSIDPassword" # Enable fallback hotspot (captive portal) in case wifi connection fails ap: ssid: "Esphome Node1 Fallback Hotspot" password: "Cpxg9hRIBU7M" captive_portal: # Enable logging logger: # Enable Home Assistant API api: password: "APIpassword" ota: password: "OTApassword" # Just embedded test D3 (GPIO0) button on every ESP8266 Devboard # You can press D3 button several times to simulate incoming GGreg pulses binary_sensor: - platform: gpio name: "D3 Input Button" pin: number: 0 inverted: True mode: INPUT_PULLUP # Here we calc and include to the firmware a power and doze values of ionizing radiation as sensor outputs sensor: - platform: pulse_counter pin: D3 unit_of_measurement: 'mkSv/Hour' name: 'Ionizing Radiation Power' count_mode: rising_edge: DISABLE falling_edge: INCREMENT update_interval: 60s accuracy_decimals: 3 id: my_doze_meter filters: - sliding_window_moving_average: # 5-minutes moving average (MA5) here window_size: 5 send_every: 5 - multiply: 0.0054 # SBM20 tube conversion factor of pulses into mkSv/Hour - platform: integration name: "Total Ionizing Radiation Doze" unit_of_measurement: "mkSv" sensor: my_doze_meter # link entity id to the pulse_counter values above icon: "mdi:radioactive" accuracy_decimals: 5 time_unit: min # integrate values every next minute filters: - multiply: 0.00009 # obtained doze (from mkSv/hour into mkSv/minute) conversion factor: 0.0054 / 60 minutes = 0.00009; so pulses * 0.00009 = doze every next minute, mkSv. ####### END of ggreg20_esp8266_esphome.yaml #####